Coupled Volterra Equations with Blow-Up Solutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations

In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of “blow-up collocation solution” and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we d...

متن کامل

Blow-up solutions of nonlinear Volterra integro-differential equations

The paper studies the finite-time blow-up theory for a class of nonlinear Volterra integro-differential equations. The conditions for the occurrence of finite-time blow-up for nonlinear Volterra integro-differential equations are provided. Moreover, the finite-time blow-up theory for nonlinear partial Volterra integro-differential equations with general kernels is also established using the blo...

متن کامل

Blow-up Solutions for N Coupled Schrödinger Equations

It is proved that blow-up solutions toN coupled Schrödinger equations iφjt + φjxx + μj |φj |φj + N X k 6=j, k=1 βkj |φk|k |φj |jφj = 0 exist only under the condition that the initial data have strictly negative energy.

متن کامل

Blow - up Solutions for Gkdv Equations with K Blow

In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...

متن کامل

Blow-Up Behavior of Collocation Solutions to Hammerstein-Type Volterra Integral Equations

We analyze the blow-up behavior of one-parameter collocation solutions for Hammerstein-type Volterra integral equations (VIEs) whose solutions may blow up in finite time. To approximate such solutions (and the corresponding blow-up time), we will introduce an adaptive stepsize strategy that guarantees the existence of collocation solutions whose blow-up behavior is the same as the one for the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 1995

ISSN: 0897-3962

DOI: 10.1216/jiea/1181075901